Using Bonferroni, BIC and AIC to assess evidence for alternative biological pathways: covariate selection for the multilevel Embryo-Uterus model
نویسندگان
چکیده
BACKGROUND IVF treatments for infertility involve the transfer of multiple embryos in any one treatment cycle. When data is available on individual embryos the outcomes of each embryo are only partially observed, as treatment outcome (live birth) is assessed at the patient level. Two-level Embryo-Uterus (EU) models have been developed which assume a biologically plausible mechanism and assume that effects are mediated directly through the embryo (E) and also through the uterine environment (U), represented by two sub-models. This approach potentially allows inference as to the association of patient variables with outcome. However, when the variable is measured at the patient level either additional decisions have to be made in the modelling process as to in which sub-model the variable should be included or some model selection algorithm has to be invoked. These uncertainties have limited the practical application of these models. METHODS We have conducted simulation studies based around realistic parameter values of situations where a putative patient-level variable is being considered for inclusion in an EU model and/or the mechanistic interpretation from the sub-model assignment is of interest. Firstly we explore various strategies for inference for a variable of interest where the sub-model is either pre-specified or considered unknown. Secondly we explore the use of information criteria to select the appropriate sub-model and the strength of evidence for that assignment. These are demonstrated in a reanalysis of a previously published dataset. RESULTS In the absence of prior evidence for potential prognostic factors measured at the patient level, two single degree-of-freedom likelihood ratio tests with a Bonferroni correction including the variable of interest in first the E then the U sub-model performs well as a statistical test for association with outcome. For model building the information criteria can be used, but large differences are required (≥ 6) to provide reasonable evidence of sub-model assignment. Previous interpretations have been over-optimistic. CONCLUSIONS These results suggest simple strategies and should enable these models to be used more confidently in practical applications.
منابع مشابه
MIXED_FIT: A SAS Macro to Assess Model Fit and Adequacy for Two-Level Linear Models
As multilevel models (MLMs) are useful in understanding relationships existent in hierarchical data structures, these models have started to be used more frequently in research developed in social and health sciences. In order to draw meaningful conclusions from MLMs, researchers need to make sure that the model fits the data. Model fit, and thus, ultimately model selection can be assessed by e...
متن کاملProbability Distribution Fitting to Maternal Mortality in Nigeria.
The consequences of Maternal Mortality (MM) cannot be overemphasized. It inhibits population growth resulting into loss of lives among others. This work tends to obtain the maternal mortality rates (MMR) in Nigeria, identify some fitted distributions to MMR and determine which of the distributions best fits the data. A comprehensive Exploratory Data Analysis (EDA) was carried on MM and the MMRs...
متن کاملModel Selection for Mixture Models Using Perfect Sample
We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...
متن کاملModel weights and the foundations of multimodel inference.
Statistical thinking in wildlife biology and ecology has been profoundly influenced by the introduction of AIC (Akaike's information criterion) as a tool for model selection and as a basis for model averaging. In this paper, we advocate the Bayesian paradigm as a broader framework for multimodel inference, one in which model averaging and model selection are naturally linked, and in which the p...
متن کاملParametric or Nonparametric? a Parametricness Index for Model Selection
In model selection literature two classes of criteria perform well asymptotically in different situations: Bayesian information criterion (BIC) (as a representative) is consistent in selection when the true model is finite dimensional (parametric scenario); Akaike’s information criterion (AIC) performs well in an asymptotic efficiency when the true model is infinite dimensional (nonparametric s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2013